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1. INTRODUCTION

Consider the problem

(P) Find x to minimize f(x) + II r(x)11 subject to g(x) ~ 0,

wheref(x), r(x), and g(x) are differentiable functions from Rn into R, Rm, and
Rt, respectively, and Rm is equipped with an abstract norm II '11. We give here
necessary conditions for x to be a solution of the above problem. Under
certain additional assumptions, we show that these conditions are also
sufficient, and subsequently formulate a dual problem and establish appro
priate relationships between the solution to this and the original problem.
Our results specifically generalize those of Mond and Schechter [7] and also
include the results of, for example, Mond [6] and Sreedharan [10] as special
cases. The theorems given here are particularly relevant to the problem of
(constrained) best approximation in abstract norms. For example, in the
unconstrained linear case, a number of algorithms have been proposed which
solve the dual, rather than the original primal problem [1,2, 11]. A primal
dual pair for a related class of linear problems is given by Oettli [8].

Throughout, we use the notation that d(x) denotes the vector of partial
derivatives off with respect to x, A(x) denotes the m X n matrix of partial
derivatives of r with respect to x, and G(x) is the t X n matrix of partial
derivatives of g with respect to x. (The dependence on x is often suppressed
in the notation, when no confusion is likely.) If x satisfies the constraints
g(x) ~ 0, x is said to be feasible, and, following Fiacco and McCormick [4J,
we can define a feasible direction at x as a direction which is tangent at x to a
once differentiable are, the arc emanating from x and contained in the feasible
region (which we will assume has a nonempty interior).

If a regularity condition, for example the first-order constraint qualification
of Kuhn and Tucker (see [4]) is assumed satisfied, the set of feasible direc
tions may be identified with the set of feasible directions for the constraints
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linearized at x, and therefore may be conveniently described as follows. Let
G1 be the matrix obtained from G by deleting the rows corresponding to
constraints holding with strict inequality. Then a direction y is said to be
feasible at x if y satisfies

(1.1)

We will assume throughout that the first-order constraint qualification holds
at a solution to the problem.

It will be necessary to make use of some properties which are possessed by
abstract norms (for details of these, see Householder [5]). In particular, it is
natural to define the dual norm II . 11* on Rm by means of the relation

II v 11* = max uTv
I lIull~I'

where u, v E Rm. We can also write

II v II = max uTv.
lIull*~1

(1.2)

(1...3)

Examples of dual pairs of norms are readily obtained from the class of L p

norms, I ~ p ~ CX): the norms L p and L q are dual when lip + l/q = 1.
We also require the subdifferential (or set of subgradients) of a convex

function h(w) at w, which we denote by oh(w). A vector v is a subgradient of
h(w) at w if it satisfies the subgradient inequality

h(u) ;;:: h(w) + vT(u - w), '<Iu (1.4)

(for a full discussion of the properties of subgradients, see Rockafellar [9]).
In particular, we make frequent use of the subdifferential of [Iwll at w, which,
using (I.4), may be shown to be given by

011 wII = {v : II wII = WTV, II v 11* ~ I}. (1.5)

If h(w) is differentiable at w, then oh(w) consists of a single vector v, which is
just the gradient of h(w) at w.

Finally, we require the set of feasible directions with respect to a constraint
of the form

Ilwll ~ 1. (1.6)

By analogy with the definition given above for a differentiable constraint, we
say that y is a feasible direction for (1.6) at wif, when (I .6) holds with equality,

for all v E 0 II w II . (1.7)
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2. NECESSARY AND SUFFICIENT CONDITIONS
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Without imposing further assumptions on problem (P), it is possible to
give necessary conditions for a vector x to be a solution. We require the
following preliminary lemma.

LEMMA 1. Given a vector x ERn, let x(O) define a once differentiable are,
parameterized by 0 ~ 0 in an interval (0, T), where T > 0, and emanating
from x = x(O), and let w(O) E 0 II r(x(O»1I . Then the limit points as 0 --+ 0 of the
sequence {w(O)} all lie in 0 II r(x)11 .

Proof Writing w = w(O), for all 0 satisfying 0 ~ 0 ~ T, we have

wTr(x(O» ~ II r(x(O»1I using Eq. (1.3)

= w(OY r(x(O»

= w(OY rex) + Ow(OY Az(B) + 0(02),

where z;(O) = dxP)!dO, i = 1,2,... , n.
Thus II r(x)11 + BwTAz(B) ~ W(8)Tr(X) + Ow(B? Az(B) + 0(02), i.e.,

O(w(O)T Az(O) - wTAz(B» + 0(02) ~ II r(x)11 - w(B)T rex) ~ O.

The result follows on letting 0 --+ o. Q.E.D.

THEOREM I. Let x solve (P), and let V ~ (} II r II. Then:3 v E V, ). ~ 0
such that

Vg = 0,

vTA + dT = ).TG.

Proof Assume x is a solution, and that vectors v E V, ). ~ 0 satisfying
the given conditions do not exist.

Thus

and by the theorem on linear inequalities (Cheney [3, p. 191), 3 i = [:) such
that

vTAz + dTz + V(o:g - Gz) < 0 vV E V, A ~ O. (2.1)

Taking A = 0, it is clear that

vTAz + dTz < 0 for all v E V. (2.2)
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In addition we must have
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Gz ~ iXg, (2.3)

otherwise we can violate (2.1) by a suitable choice of A. Thus, if G is parti
tioned as before so that G1 consists of the rows of G corresponding to zero
components of g, from (2.3) we have

and it follows that z is a feasible direction.
Now let x(O) define a once differentiable are, parametrized by 0 in the

interval 0 ~ 0 ~ T, T > 0, emanating from x == x(O), and contained in the
feasible region. Then, since x is a solution,

II r(x(O»1I + f(x(O» - II r(x)11 - f(x) ~ 0, 0 ~ 0 ~ T.

Thus if w(O) E 0 II r(x(O»11 , we have

w(O)T r(x(O» + f(x(O» - II r(x)1I - f(x) ~ 0, 0 ~ 0 :;;:T.

:. w(O)T rex) + OW(O)T A z(O) + () dTz(O) - II r(x)11 + O(fJ2) ~ 0 0 ~ 0 ~ T,
(2.4)

where Zi(O) = dXi(O)/dO, i = 1,2,... , n. Now, using Lemma I, there exists a
sequence ()l , O2 ,,,,, in [0, T], tending to zero, such that

W(Ok)T AZ«()k) -+ yTAz,

for some y E V. It follows from (2.4) that

as k -+ 00,

yTAz + dTz ~ 0

for some y E V, which contradicts (2.2) and proves the result. Q.E.D.

Now let f(x), II r(x)11 be convex functions of x, .and let g be concave. Then
problem (P) becomes a convex programming problem, which we refer to as
problem (PC). We now show that the conditions of Theorem 1, together with
the satisfaction of the constraints, are sufficient for x to be a solution to
problem (PC). Since II r(x)11 is a convex function of x, we can define the
subdifferential of II r(x)11 at x as a function of x, and this we denote by U.
Letting V = 0 II r II, we have

LEMMA 2. U E U iff v E V with u = ATV •

Proof Let U E U. Then the subgradient inequality (1.4) gives that

II r(z)11 ~ 11 r(x)11 + (z - xY u, Vz.
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Thus the function F(z) = Ii r(z)il - ZTU is minimized at z = x, and by Theorem
1 3 y E V such that yTA = u.

Now let y E V. Since II r(x)li is a convex function of x, we must have, for
any z,

II r(z)l! - II r(x)ll ;::;: (l/fL)(11 rex + fL(Z - x))11 - II r(x)l!)

;::;: O/fL)(yTr(X + fL(Z - x)) - II r(x)ID

= yTA(z - x) + o{j.t)

O<fL~l

O<fL~l

O<fL~1.

Letting fL ---+ 0, it follows that we must have yTA E U, since z is arbitrary.
Q.E.D.

THEOREM 2. x solves (PC) iff 3 y E V, A ;::;: 0 such that

g;::;: 0,

ATg = 0,

vTA + dT = ATG.

Proof Necessity follows from Theorem 1. Let the conditions be satisfied
at x, and let z be any other feasible vector. Then

f(z) + II r(z)II - f(x) - II r(x)11

;::;: d(xy (z - x) + yTA(x) (z - x)

= ATG(X) (z - x)

;::;: ATg(Z) - ATg(X)

;::;: o.

by the convexity off and Lemma 2

by the concavity of g

Q.E.D.

Remark. This result may also be obtained as a consequence of Rockafellar
[9, Theorem 28.3] and Lemma 2.

A particular application of Theorems 1 and 2 is in the provision of charac
terization results for nonlinear constrained best approximation problems
(f = 0). As an example, consider the case of L oo (Chebyshev) approximation.
Here, if r =1= 0,

V = conv{sgn(r;) e; ,j E J},

where J = {j: I r; I = II r II}, and e; is thejth coordinate vector. For a given x,
we will assume for convenience that the components of r are ordered so that
J = {I, 2, ... , k}. Let GI be the matrix obtained from G by deleting the rows
corresponding to constraints holding with strict inequality, and let Al be the
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matrix formed by the first k rows of A. Then, the conditions of Theorem 1
correspond to the existence of a vector 11 satisfying

I1
T [_~~] = 0,

CXi sgn(ri) )0 0,

CXi )0 0,

k

Ilcxil=l.
i~l

i=1,2,... ,k,

i > k,

In fact, using Carath6odory's theorem, an appropriate vector 11 exists with at
most (n + 1) nonzero components.

3. DUALITY THEORY

For certain (nondifferentiable) convex programming problems, the eXis
tence and nature of the dual problem is considered in general terms by
Rockafellar [9, Section 30]. Because of the special nature of the class of
problems with which we are concerned, it is easy to show directly that
problem (PC) is dual to the following problem, problem (DC):

find y, v, A to maximize

F(y, v, A) = f(y) + vTr(y) - ATg(y)

subject to

(DC) vTA(y) + d(y)T = ATG(y),

v E aII r(Y)11 ,

A ;;?: 0.

An argument similar to that used in the sufficiency proof of Theorem 2
gives:

THEOREM 3. [fx isfeasiblefor (PC) and (y, v, A) is feasible for (DC) then

II r(x)11 + f(x) )0 F(y, v, A).

An immediate consequence of Theorem 1 (or Theorem 2) is:

THEOREM 4. If x is optimal for (PC), 3 (y, v, A) with y = x which is
optimal for (DC) with the objective functions equal.
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It might be presumed, from inspection of problem (DC), that the constraint
v EO II r(Y)11 could be relaxed to the simpler constraint

II v 11* ~ 1.

However, this is not possible in general, as the following example shows.

EXAMPLE. n = 1, m = 2, t = °(no constraints),f= 0, L I norm.
r = (x2, x - x2)T, giving zero as the minimum value of the norm. The dual

objective function is

where v = (VI' V2)T, and the equality constraint is

This constraint is satisfied by y = t, VI = 0, V2 = 1, and also II y 11* ~ 1.
However y ¢ 0 II r(Y)11 , and it is easily verified that Theorem 3 is violated.

An important subset of the class of problems (PC) for which the simpler
form of the dual may be shown to be appropriate occurs when r(x) is a linear
function ofx. We will now restrict consideration to this particular case which
we refer to as problem (PL). We can therefore write

r(x) = Ax + b,

where A is a (constant) m X n matrix, and bERm is a constant vector.
Consider now the problem:

find Y, Y, A to maximize

F(y, v, A) = f(y) + ATG(y) Y- d(y)T Y+ yTb - lI.Tg(y)

subject to

(DL) yTA + d(y)T = ATG(y),

II vll* ~ 1,

A ~o.

THEOREM 5. Ifx isfeasiblefor (PL) and(y, y, A) isfeasiblefor (DL) then

II r(x)II + f(x) ~ F(y, v, A).

Proof II r(x)11 + f(x) - f(y) - ATG(y) Y + d(y)T Y - yTb + ATg(y) ~
vTAx + f(x) - f(y) - ATG(y) Y+ d(y)T Y+ ATg(y) ~ °using the convexity
ofJ, concavity of g and the constraints. Q.E.D.
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Use of Theorem 1 (or Theorem 2) immediately gives:

THEOREM 6. ffx is optimalfor (PL), 3 (y, v, A) with y = x which is optimal
for (DL) with the objective functions equal.

The remainder of this paper is devoted to the provision of a theorem going
in the opposite direction to Theorem 6. To this end, we require necessary
conditions for a solution to problem (DL), and as before, we assume that the
first-order constraint qualification is satisfied there, so that the sets of
feasible directions introduced in Section 1 are appropriate. Before proving the
main theorem, we require some preliminary results, including the following
lemma which is essentially a generalization of Farkas' lemma.

LEMMA 3. Let W be a closed, bounded, convex set not containing the
origin, let ri , i = 1,2,... , s be given vectors, and suppose that there are no
vectors & ~ 0, W E W such that

8

W + L 0iri = 0,
i-I

where & = (01 , Oz ,... , OsY. Then,for a given vector q, the set

{y: yTq > 0, yTri ~ 0, i = 1,2,... , S, yTw ~ O,/or all W E W}

is empty iff 3 f3 ~ 0, ex ~ 0, W E W such that

8

L airi + f3w = q.
i=1

(3.1)

(3.2)

Remark. The conditions of this lemma are actually stronger than is
necessary. They are, however, appropriate for our purposes.

Proof The sufficiency of the conditions is obvious. Suppose (3.2) cannot
be satisfied. Let K1 be the convex cone generated by the vectors ri, i =

1,2,... , s, and let Kz be the convex cone generated by the set W. Then both
K 1 and Kzare closed. Further, by (3.1) there is no k1 E K 1 , kzE Kzsatisfying
k1 + kz = °save for k1 = kz = 0. Thus K = conv(K1 U Kz) is a closed,
convex cone (Rockafellar [9, p. 75]). Let h E K be such that

II h - q liz ~ II k - q liz, all k E K,

which exists since K is closed. Then we must have

hT(h - q) = 0.
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Let Y = q - h. Then qTy = II h - q 112> O. The definition of h also implies
that for every k E K

(h - q)T (k - h) ~ °
... yTk ~ 0 for all k E K.

This shows the existence of a suitable vector y and concludes the proof.
Q.E.D.

Let us return now to problem (DL). Let

W = 811 vll*,

and let yT = (y1T, yl, Yl), where Yl ERn, Y2 E R"', and Y3 E Rt. Writing

M == M(y, A) == V2(1•.Tg(y) - f(y»,

(3.3)

where the partial differentiation is with respect to the components of y, it
follows that the triple (Yl , Y2 , Y3) is a feasible direction for the constraints of
problem (DL) at (y, v, A) if

YI™ - ylA + ylG = 0, (3.4)

ylw ~ 0 for all wE W, if II v 11* = I, (3.5)

-ylei ~ 0 if Ai = 0, i = 1,2,... , t, (3.6)

where ei is the ith coordinate vector. Further, if (y, v, A) is a solution of
problem (DL), any feasible direction Y must satisfy

y/My + ylb + yl(Gy - g) ~ o.

Now, let R be the (n + m + t)x (2n + t) matrix defined by

(3.7)

let

[

M -M
R= -A A

G -G

[
MY]

q= b
Gy-g ,

~] ,
-I

(3.8)

(3.9)

and let w = (OT, wT, OT), where the vector w occupies positions (n + I) to
(n + m) in w. Then if (y, v, A) solves problem (DL), the set

{y: yTq > 0,

kyTW ~ 0,

yT}? ~ O}

for all WE W,

(3.10)

(3.11)

(3.12)
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is empty, where k = 1 if II v 11* = 1 and zero otherwise, and R is the matrix
obtained from R by deleting those columns from the last t which correspond
to components of A which are not equal to zero.

LEMMA 4. Let M be nonsingular at (y, v, A). Then ifll v 11* = 1, ~ S, W E W
such that

Rs + w= 0. (3.13)

Proof The existence of S, W E W satisfying (3.13) implies that W = 0,
which contradicts the fact that II v 11* = 1. Q.E.D.

LEMMA 5. Let (y, v, A) solve problem (DL) with M nonsingular. Then

(1) g(y) ~ 0,

(2) 3 f3 ~ 0, W E W such that

with
fey) = f3w

f3(11 v 11* - 1) = ATg(y) = 0.

Proof If (y, v, A) solves problem (DL) then ~ y satisfying (3.10)-(3.12).
Let II v 11* = 1. Then, using Lemma 4, Lemma 3 gives that 3 f3 ~ 0, &~ 0,
WE W such that

R& + f3w = q,
i.e.,

Ra. + f3w = q

where a. is formed from &by adding zeros. Thus, writing a.T = (a.I T, a.l, a.l),
where a.l , a.2 ERn, we have

M(a.l - a.2) = My

-A(a.l - a.2) + f3w = b

G(a.l - a.2) - a.a = Gy - g.

(3.14)

(3.15)

(3.16)

The nonsingularity of M shows that y = a.l - a.2 , and the result follows
from (3.15) and (3.16).

When II v 11* < 1, we may apply Farkas' lemma directly in the usual way
(see, for example, Fiacco and McCormick [4]) to obtain conditions which are
the required ones with f3 = 0. Q.E.D.

THEOREM 7. Let (y, v, A) be optimal for (DL) with M nonsingular. Then y
is optimalfor (PL).
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Proof An immediate consequence of Lemma 5 is that if (y, v, :A) solves
(DL) with M nonsingular, then y is feasible for (PL). It remains to show that
y is also optimal for (PL), which by Theorem 2 and the dual feasibility of
(y, v, :A) reduces to showing that v E 0 II r(y)11 .

Now Lemma 5 shows that 3w E W such that

r(y) = f3w,

and so II r(y)II = f311 w II = f3. Further

r(yrv = f3vT w = f311 v 11*.

Since f3(I - II v 11*) = 0 by Lemma 5, the result follows.
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