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1. INTRODUCTION

Consider the problem
(P) Find x to minimize f(x) + || r(x)|| subject to g(x) >= 0,

where f(x), r(x), and g(x) are differentiable functions from R into R, R™, and
R, respectively, and R™ is equipped with an abstract norm || - || . We give here
necessary conditions for x to be a solution of the above problem. Under
certain additional assumptions, we show that these conditions are also
sufficient, and subsequently formulate a dual problem and establish appro-
priate relationships between the solution to this and the original problem.
Our results specifically generalize those of Mond and Schechter [7] and also
include the results of, for example, Mond [6] and Sreedharan [10] as special
cases. The theorems given here are particularly relevant to the problem of
(constrained) best approximation in abstract norms. For example, in the
unconstrained linear case, a number of algorithms have been proposed which
solve the dual, rather than the original primal problem [1, 2, 11]. A primal-
dual pair for a related class of linear problems is given by Oettli [8].

Throughout, we use the notation that d(x) denotes the vector of partial
derivatives of f with respect to x, A(x) denotes the m X n matrix of partial
derivatives of r with respect to x, and G(x) is the ¢ X » matrix of partial
derivatives of g with respect to x. (The dependence on x is often suppressed
in the notation, when no confusion is likely.) If x satisfies the constraints
g(x) > 0, x is said to be feasible, and, following Fiacco and McCormick [4],
we can define a feasible direction at x as a direction which is tangent at x to a
once differentiable arc, the arc emanating from x and contained in the feasible
region (which we will assume has a nonempty interior).

If a regularity condition, for example the first-order constraint qualification
of Kuhn and Tucker (see [4]) is assumed satisfied, the set of feasible direc-
tions may be identified with the set of feasible directions for the constraints
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linearized at x, and therefore may be conveniently described as follows. Let
G, be the matrix obtained from G by deleting the rows corresponding to
constraints holding with strict inequality. Then a direction v is said to be
feasible at x if y satisfies

Gy = 0. (1.1

We will assume throughout that the first-order constraint qualification holds
at a solution to the problem.

It will be necessary to make use of some properties which are possessed by
abstract norms (for details of these, see Householder [5]). In particular, it is
natural to define the dual norm || - ||* on R™ by means of the relation

v = max u’v, (1.2)

where u, v e R™. We can also write

vl = Im*a)i u’v, (1.3)
ful*=

Examples of dual pairs of norms are readily obtained from the class of L,
norms, 1 < p < oo: the norms L, and L, are dual when 1/p + 1/g = 1.

We also require the subdifferential (or set of subgradients) of a convex
function A(w) at w, which we denote by da(w). A vector v is a subgradient of
h(w) at w if it satisfies the subgradient inequality

h() = h(w) + vi(u — w), Vu (1.4)

(for a full discussion of the properties of subgradients, see Rockafellar [9]).
In particular, we make frequent use of the subdifferential of || w|| at w, which,
using (1.4), may be shown to be given by

offwi ={v:wl=w|v]* <1} 1.5

If A(w) is differentiable at w, then dh(w) consists of a single vector v, which is
just the gradient of A(w) at w.
Finally, we require the set of feasible directions with respect to a constraint
of the form
hwi < 1. (1.6)

By analogy with the definition given above for a differentiable constraint, we
say that v is a feasible direction for (1.6) at w if, when (1.6) holds with equality,

¥Yiv<0 forallved||w]. (1.7
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2. NECESSARY AND SUFFICIENT CONDITIONS

Without imposing further assumptions on problem (P), it is possible to
give necessary conditions for a vector x to be a solution. We require the
following preliminary lemma.

LeMMA 1. Given a vector x € R*, let X(0) define a once differentiable arc,
parameterized by 6 > 0 in an interval [0, T, where T > 0, and emanating
from x = x(0), and let w(0) € 0 || v(x(8))|| . Then the limit points as 8 — 0 of the
sequence {w(0)} all lie in 0} x(x)|| .

Proof. Writing w = w(0), for all 8 satisfying 0 << 8 < T, we have

wr(x(6)) <|[r(x(d))|  wusing Eq. (1.3)
= w(6)" r(x(6))
= w(6)T r(x) + Ow() Az(0) + O(6?),

where z(8) = dx(0)/d0,i =1, 2,..., n.
Thus || ¥(x)]] + 0w Az(0) < w(0)Tr(x) + Ow(6)T Az(6) -+ O(6?), i.e.,

o(w(O)" A2(6) — w"Az(0)) + O(6%) = | r(x)l| — w(6)" r(x) = 0.
The result follows on letting § — 0. Q.E.D.

THEOREM 1. Let X solve (P), and let V= 20|v|. ThenIveV,2 >0
such that
Mg =0,

vi4 -+ dT = ATG,

Proof. Assume X is a solution, and that vectors ve ¥V, & > 0 satisfying
the given conditions do not exist.
Thus

SRE

0 ¢ conv ]+[d70],veV,l>O ,

and by the theorem on linear inequalities (Cheney [3, p. 19]), 3 £ = [%] such
that

v7Az 4 4%z 4 W (ag — Gz) < 0O VveV,a>=0. .1

Taking A = 0, it is clear that

VIAZ + 47z < 0 for all ve V. 2.2)
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In addition we must have
Gz > ag, 2.3)

otherwise we can violate (2.1) by a suitable choice of A. Thus, if G is parti-
tioned as before so that G, consists of the rows of G corresponding to zero
components of g, from (2.3) we have

Gz=0

and it follows that z is a feasible direction.

Now let x(6) define a once differentiable arc, parametrized by 6 in the
interval 0 < 0 < 7, T > 0, emanating from x = x(0), and contained in the
feasible region. Then, since x is a solution,

| eI + f(x(O) — [ e(X)| — f(x) =0, 0 <OT.

Thus if w() € 9 || r(x(0))|| , we have
WO r(x(0)) -+ f(x(®) — [ r(x)| — f(x) =0, 0 <O <T.
S W) x(x) + Gw()" Az(6) + 6d72(0) — [ r(x)] + O(6®) >0 0 <6 <T,
2.9

where z,(0) = dx,(6)/df, { = 1, 2,..., n. Now, using Lemma 1, there exists a
sequence 8, , 0, ,..., in [0, T], tending to zero, such that

w(0,)" Az(0,) —~vTAz, ask— o,
for some v e V. It follows from (2.4) that
viAz + d"z >0

for some v € V, which contradicts (2.2) and proves the result. Q.E.D.

Now let f(x), || r(x)|| be convex functions of x, and let g be concave. Then
problem (P) becomes a convex programming problem, which we refer to as
problem (PC). We now show that the conditions of Theorem 1, together with
the satisfaction of the constraints, are sufficient for x to be a solution to
problem (PC). Since || r(x)|| is a convex function of x, we can define the
subdifferential of || r(X)|| at x as a function of x, and this we denote by U.
Letting V = 0|r |, we have

LEMMA 2. neUiffve V withu = A"v.
Proof. Let ue U. Then the subgradient inequality (1.4) gives that

Ir@i =l + @ —x)Tu, Vz
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Thus the function F(z) = || r(z)|| — 27w is minimized atz = x, and by Theorem
1 3v e V such that vi4 = u.

Now let v e V. Since || r(x)|| is a convex function of x, we must have, for
any z,

i@l — vl = (I r(x + pz — D — 1)) 0 <p <1
= (p)vr(x + pz —x) — X)) 0<p <1
= vTA(z — x) + O(u) O<p<l.

Letting . — 0, it follows that we must have v/ 4 € U, since z is arbitrary.
Q.E.D.

THEOREM 2. X solves (PC)iff 3ve V, A = 0 such that

g=>0,
Ag =0,
vVA4 + d7 = A7TG.

Proof. Necessity follows from Theorem 1. Let the conditions be satisfied
at x, and let z be any other feasible vector. Then

@ + I @) — F6) — ¥
= dx) (z-x) + vVTA(X) (z—x) by the convexity of f and Lemma 2
= NG(x)(z — x)
> ANg(z) — Ng(x) by the concavity of g
> 0. Q.E.D.

Remark. This result may also be obtained as a consequence of Rockafellar
[9, Theorem 28.3] and Lemma 2.

A particular application of Theorems 1 and 2 is in the provision of charac-
terization results for nonlinear constrained best approximation problems
(f = 0). As an example, consider the case of L, (Chebyshev) approximation.
Here, if r £ 0,

V = conv{sgn(r;) e; ,j€ J},

where J ={j: | r; | = || 1|}, and e; is the jth coordinate vector. For a given x,
we will assume for convenience that the components of r are ordered so that
J ={1,2,..., k}. Let G, be the matrix obtained from G by deleting the rows
corresponding to constraints holding with strict inequality, and let 4, be the
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matrix formed by the first & rows of A. Then, the conditions of Theorem 1
correspond to the existence of a vector a satisfying

In fact, using Carathéodory’s theorem, an appropriate vector « exists with at
most (r + 1) nonzero components.

3. DuaLity THEORY

For certain (nondifferentiable) convex programming problems, the exis-
tence and nature of the dual problem is considered in general terms by
Rockafellar [9, Section 30]. Because of the special nature of the class of
problems with which we are concerned, it is easy to show directly that
problem (PC) is dual to the following problem, problem (DC):

find y, v, A to maximize

Fy, v, 2) = f(y) + v'r(y) — Mg(y)

subject to
(DO VT A(Y) + d(y)” = M G(y),
ved |,
A =0

An argument similar to that used in the sufficiency proof of Theorem 2
gives:

THEOREM 3. If x is feasible for (PC) and (y, v, ) is feasible for (DC) then
xRl + f(x) = F(y, v, A).
An immediate consequence of Theorem 1 (or Theorem 2) is:

Tueorem 4. If x is optimal for (PC), 3(y, v, 2) with y = x which is
optimal for (DC) with the objective functions equal.
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It might be presumed, from inspection of problem (DC), that the constraint
v e | r(y)| could be relaxed to the simpler constraint

Ivi* <1

However, this is not possible in general, as the following example shows.

ExAMPLE. n = 1, m = 2, t = 0 (no constraints), f = 0, L, norm.
r = (x2, x — x?)7, giving zero as the minimum value of the norm. The dual
objective function is

YHvy — vg) + yve
where v = (v, , 0,)7, and the equality constraint is
2y(vl - 02) + Uz == 0.

This constraint is satisfied by y =14, v;, =0, v, = 1, and also || v|* < 1.
However v ¢ 2| 1(y)]|, and it is easily verified that Theorem 3 is violated.

An important subset of the class of problems (PC) for which the simpler
form of the dual may be shown to be appropriate occurs when r(x) is a linear
function of x. We will now restrict consideration to this particular case which
we refer to as problem (PL). We can therefore write

r(x) = Ax + b,

where A is a (constant) m X » matrix, and be R™ is a constant vector.
Consider now the problem:

find y, v, A to maximize
F(y,v,2) = f(y) + AG(y) y — d(y)" y + v'b — A"g(y)
subject to

(DL) v74 + d(y)" = ATG(y),
Tvi* <1,
A>0.

THEOREM 5. If x is feasible for (PL) and (y, v, M) is feasible for (DL) then
x| + f(x) = F(y, v, D).
Proof. [ x(®)| + f(x) — f(y) — MG(y)y + dy)"y — v'b + 2Tg(y) >

VTAX + f(X) — f(y) — ATG(Y) y + d(¥)T y + ATg(y) > O using the convexity
of f, concavity of g and the constraints. Q.E.D.
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Use of Theorem 1 (or Theorem 2) immediately gives:

THEOREM 6. Ifx is optimal for (PL), 3 (y, v, A) with y = x which is optimal
for (DL) with the objective functions equal.

The remainder of this paper is devoted to the provision of a theorem going
in the opposite direction to Theorem 6. To this end, we require necessary
conditions for a solution to problem (DL), and as before, we assume that the
first-order constraint qualification is satisfied there, so that the sets of
feasible directions introduced in Section 1 are appropriate. Before proving the
main theorem, we require some preliminary results, including the following
lemma which is essentially a generalization of Farkas’ lemma.

LemMmA 3. Let W be a closed, bounded, convex set not containing the
origin, let ¥, , i = 1,2,..., s be given vectors, and suppose that there are no
vectors & = 0, we W such that

i=1

where 8 = (8, , 8, ,..., 6,)T. Then, for a given vector q, the set
{v:¥"q >0,¥T; <0,i =1,2,....,5, YW <0, for all we W}

isempty iff 18 =0, « = 0, w e W such that

i ax; + fw =gq. (3.2)

i=1

Remark. The conditions of this lemma are actually stronger than is
necessary. They are, however, appropriate for our purposes.

Proof. The sufficiency of the conditions is obvious. Suppose (3.2) cannot
be satisfied. Let K, be the convex cone generated by the vectors r;, i =
1,2,..., 5, and let K, be the convex cone generated by the set . Then both
K, and K, are closed. Further, by (3.1) there is no k, € Kj , k; € K, satisfying
k; + k, = 0 save for k; =k, = 0. Thus K = conv(K; U K,) is a closed,
convex cone (Rockafellar [9, p. 75]). Let h € K be such that

Ih—ql. <[k —gql., alkek,

which exists since K is closed. Then we must have

h'th — q) =0.
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Let y = q — h. Then q"y = || h — q ||; > 0. The definition of h also implies
that for every k € K

h—q"(k—h=>0
YTk <0 forallk e K.

This shows the existence of a suitable vector y and concludes the proof.
Q.E.D.

Let us return now to problem (DL). Let
W=afvl* (3.3)
and let ¥* = (v,7, vo7, v57), where v, € R*, v, € R™, and y,; € R'. Writing
M = M(y, ) = Vi(@Tg(y) — f(y)),

where the partial differentiation is with respect to the components of y, it
follows that the triple (v; , ¥z , Ys) is a feasible direction for the constraints of
problem (DL) at (y, v, ) if

YV'M — Y,"A + v7G =0, (B4
YW <0 forallwe W, if|jvi* =1, (3.5)
—vTe; <O ifA=0,i=12..,¢ (3.6)

where e; is the ith coordinate vector. Further, if (y, v, A) is a solution of
problem (DL), any feasible direction y must satisfy

"My + v.'b + v'(Gy — g) < 0. (3.7
Now, let R be the (n + m + t) X (2n + t) matrix defined by

r M M 0
R=]|—-4 A 0] , (3.8)
¢ —G —I
let
My
q= b ] ) (3.9)
LGy — g

and let & = (07, w”, O7), where the vector w occupies positions (» + 1) to
(n + m) in W. Then if (y, v, &) solves problem (DL), the set

{v:¥Y'q >0, (3.10)
kY™ <0, for all we W, (3.11)
YTR <0} (3.12)
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is empty, where k = 1 if || v||* = 1 and zero otherwise, and R is the matrix
obtained from R by deleting those columns from the last ¢ which correspond
to components of A which are not equal to zero.

LEMMA 4. Let M be nonsingular at (y, v, 2). Then if | v|* =1,38, we W
such that
Rs +w=0. (3.13)

Proof. The existence of 5, we W satisfying (3.13) implies that w = 0,
which contradicts the fact that | v ||* = 1. Q.E.D.

LemMA 5. Let (y, v, A) solve problem (DL) with M nonsingular. Then

M gy =0,
2) 3B =0, we Wsuchthat

r(y) = pw
with
B(lvi* — 1) = aTg(y) = 0.

Proof. 1If (y, v, A) solves problem (DL) then 7 v satisfying (3.10)—(3.12).
Let | v||* = 1. Then, using Lemma 4, Lemma 3 gives that 38 > 0, & > 0,
w € W such that

Ré 4 Bw =g,
ie.,
Ra+ & —=q

where a is formed from & by adding zeros. Thus, writing o7 = (&7, &,7, «;7),
where «, , o, € R*, we have

Moy — o) = My (3.19)
— Aoy — o) +- Bw = b (3.15)
G(oy — o) — o3 = Gy — g. (3.16)

The nonsingularity of M shows that y = a; — a,, and the result follows
from (3.15) and (3.16).

When || v||* < 1, we may apply Farkas’ lemma directly in the usual way
(see, for example, Fiacco and McCormick [4]) to obtain conditions which are
the required ones with 8 = 0. Q.E.D.

THEOREM 7. Let (¥, V, A) be optimal for (DL) with M nonsingular. Then y
is optimal for (PL).
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Proof. An immediate consequence of Lemma 5 is that if (y, v, ) solves
(DL) with M nonsingular, then y is feasible for (PL). It remains to show that
y is also optimal for (PL), which by Theorem 2 and the dual feasibility of
(y, v, A) reduces to showing that ve d || r(y)|| .

Now Lemma 5 shows that 3w € W such that

1(y) = Bw,
and so || r(y)|| = Bl w| = B. Further

Ky v =Bviw =B v

Since (1 — {| v||*) = 0 by Lemma 5, the result follows.
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